Survey and Attempted improvements on existing recommendation system

Authors
Wentai Li / wentai412@163.com
Yingkai Tang / tangyingkai@163.com
Weiran Su/ oceansukila@163.com
Yikai Li/ 1iyk.charlie2023@gdhfi.com
Jingyun Miao / cryangfan@163.com

Abstract

This paper presents an exploration and
enhancement of existing recommendation
systems by addressing key challenges such
as the cold-start problem and data spar-
sity. We propose DGSR++, a hybrid
model that combines dynamic user-item
interaction data with content-based fea-
tures to enhance recommendation qual-
ity. Additionally, we develop MPKG-
lite, a lightweight knowledge graph em-
bedding model to mitigate cold-start is-
sues. Besides, we also improved other
models such as GTN and ensembled learn-
ing. The paper also evaluates the perfor-
mance of ensemble learning methods. Ex-
perimental results demonstrate the supe-
riority of DGSR++ in solving cold-start
challenges and improving overall recom-
mendation accuracy compared to tradi-
tional approaches.

1 Introduction

In the realm of digital information overload, rec-
ommendation systems play a crucial role as in-
formation filters, offering personalized content to
users and reducing the effort required to find rele-
vant material(Dutta). They have a significant im-
pact on improving user experience and improving
business revenue or decision making. However,
these systems face challenges——the cold-start
problem.This problem is when the system lacks
enough data about new users or new items to gen-
erate accurate recommendations Addressing these
challenges is critical to the advancement of rec-
ommendation systems and their ability to provide
users with a more diverse and satisfying range of
choices.

Many methods have been proposed to deal with
the issue. They can be broadly categorized into

two main approaches. The first is based on col-
laborative filtering. This is a program that utilizes
user-item interactions to predict preferences and
has been a cornerstone of recommendation sys-
tems due to its ability to capture implicit feedback
effectively(Fayyaz Ebrhimian Nawara). In addi-
tion, the content-based filtering focuses on the at-
tributes and content of items to generate recom-
mendations and can be another solution. This
approach is particularly useful for new users or
projects with a limited interaction history, and thus
complements collaborative filtering by providing
initial recommendations based on project charac-
teristics(Fayyaz Ebrhimian Nawara). As a result,
both approaches have their own merits and limita-
tions.

However, previous methods in recommendation
systems often rely on strong assumptions that can
be challenging to uphold in real-life scenarios. For
instance, collaborative filtering methods assume
that there is a large amount of user interaction data.
This may not be available for new users or items
and can lead to the cold-start problem(Rossen).
In addition, content-based filtering methods gen-
erally assume that project features are sufficiently
representative and can be precisely matched to
user preferences, yet this can be difficult when the
content is not descriptive enough or lacks diver-
sity(Lops). When these assumptions are violated,
previous methods may fail to provide accurate rec-
ommendations or quickly adapt to changing user
preferences, which highlight the need for a more
flexible recommendation system that can better
deal with sparse data and dynamically evolve user
interests.

Many methods are proposed to address cold
start problems, especially models based on GNNSs.
For example, DGRN utilizes a dynamic graph
framework to capture user’s evolving preferences,
performing excellently in changeable situation
(Zhang et al.). KGAT has a great ability mitigating

sparsity problems through knowledge graph em-
bedding (Wang et al.). However, there isn’t an
existing method that can work well in changeable
and sparse conditions simultaneously.

2 Related works

2.1 Recommendation System

A recommendation system is a type of artificial in-
telligence (Al) algorithm, typically rooted in ma-
chine learning, that employs big data to suggest
or recommend additional products or services to
consumers. These recommendations are formu-
lated based on various criteria, such as past pur-
chases, search history, demographic details, and
other relevant factors (Recommendation). These
systems harness historical user behavior, prefer-
ences, and other ancillary data to surface products
and content that are likely to resonate with indi-
vidual tastes. As such, the recommendation sys-
tems play a crucial role in enhancing user experi-
ence and driving sales and acting as online sales-
people who are intimately familiar with consumer
history and inclinations. With the development of
science and technology, several algorithms are de-
signed, which are collaborative filtering, content-
based, knowledge graph based, and hybrid recom-
mendation systems.

For collaborative filtering. Collaborative filter-
ing uses a matrix to map user behavior for each
item in its system. The system then draws val-
ues from this matrix to plot as data points in a
vector space. Various metrics then measure the
distance between points as a means of calculating
user-user and item-item similarity (Jacob). There-
fore, collaborative filtering systems can be either
user-based or item-based, and they often grapple
with the “cold-start” problem, which arises when
there is insufficient data on new users or items to
make accurate recommendations.

Content-based filtering, in contrast, focuses on
the attributes of items themselves, utilizing item
features to provide recommendations that are par-
ticularly effective for new entries in the system
without historical interaction data. This approach
is particularly good at solving the cold start prob-
lem for new users or new projects because it re-
lies on the intrinsic characteristics of the project
itself, rather than historical user data. It typically
leverages project metadata such as genre, director,
actor, and other descriptive attributes.

Leveraging the structured knowledge repre-

sented in knowledge graphs, the Knowledge
Graph-Based Filtering can capture complex rela-
tionships and provide a nuanced understanding of
user preferences and item characteristics. In recent
years, knowledge graphs have been used in recom-
mendation systems to overcome the user-item in-
teraction sparsity problem and the cold start prob-
lem faced by CF methods by taking the attributes
of items and users and representing them in a sin-
gle data structure (Dadoum). Last but not least,
a meta approach, which is the Hybrid recommen-
dation system, combine multiple strategies to har-
ness their collective advantages. This method is
often integrating content-based and collaborative
techniques to mitigate the inherent limitations of
each.

2.2 Graph Neural Network on
Recommendation System

In recent years, graph neural networks have been
investigated across a broad spectrum of appli-
cations that can be grouped in two scenarios:
structural scenarios, where the data has explicit
relational structure, and non-structure scenarios,
where the relational structure is implicit or ab-
sent (Zhou et al. 57-81). Structural scenarios rise
from industrial applications including recommen-
dation system and knowledge graphs. Analyzing
user-item graphs through learning user and item
embeddings lies on the cores of traditional rec-
ommendation system based on GNN. Many mod-
els based on user-item interaction are proposed
in the past few years, such as GC-MC (Berg et
al.), PinSage (Ying et al. 974-983) and NGCF
(Wang et al.). However, these traditional mod-
els are insufficient to distill dynamic collabora-
tive signals and attribute-based collaborative sig-
nal, which makes them perform poorly when fac-
ing dynamic and sparse situation. In order to solve
the problems, two state-of-the-art models based
on GNNs using different convolution operators
have been proposed respectively. Working with
spectral approaches, Dynamic Graph Recommen-
dation Network (DGRN) connects various user
sequences through a dynamic graph framework
to capture user’s evolving preferences (Zhang et
al.). Working with spatial approaches, Knowl-
edge Graph Attention Network (KGAT) utilizes
knowledge graph to break down the independent
interaction assumption by linking items with their
attributes, which can alleviate sparsity problem

(Wang et al.).

2.3 Ensemble Learning

Ensemble learning aims to obtain better gener-
alization performance by combining the predic-
tions from multiple models (Ganaie et al.). Clas-
sical ensemble learning are broadly categorized
into bagging, stacking and boosting. Bagging cre-
ates subgroups of data, known as bags, that are
trained by individual machine learning methods
such as decision trees (Ngo et al.). Stacking in-
volves training several different types of models
on the same dataset and employing an additional
model to learn the best way to integrate their pre-
dictions (Dey and Mathur). Boosting sequentially
trains a series of weak learners and combines their
outputs in a way that corrects the errors of the pre-
vious models. For example, XGboost, a scalable
tree boosting system, involving a novel tree learn-
ing algorithm for handling sparse data and a theo-
retically justified weighted quantile sketch proce-
dure enables handling instance weights in approx-
imate tree learning (Ying et al.).

3 Method

3.1 Subsection Problem Setup

Below is a problem restatement. Given the task of
recommendation and a dataset, three recommen-
dation models should be designed and aimed to
answer the research questions formulated in sec-
tion[]. First, whether the improved models out-
perform the existing solutions. Second, whether
the models resolved the issues such as cold start
and over-squashing

We approach the problem by developing a
model in three different directions. The first
model is to employ the classical ensemble learn-
ing approach. The second model utilized the
framework of Graph-Based Neural Networks(e.g.
GCN, GAT, and SAGEConv) by considering both
content-based and collaborative features. The
third model explored the usage of the state-of-the-
art model - graph transformer.

Before the implementation, we conducted
data cleaning, including normalization, de-
dimensionalization, removing the outlier, and
adapting the data format according to the require-
ments of the used library and codebase. Addition-
ally, there is also an analysis of the features of our
dataset and statements about our understanding of
it.

After implementing our models, we formulated
our evaluation metrics such as RMSE, Recall @k,
and F1 score to compare and evaluate the perfor-
mances of the models

We also have done additional evaluations, such
as a sensitivity analysis on the hyperparameters of
three of the models.

3.2 DGSR++

3.2.1 Brief Overview

We have proposed DGSR++, a hybrid model that
combines both dynamic-collaborative user-item
interaction data with static content-based features
of items.

DGSR++ has a base model called Dynamic
Graph Neural Network for Sequential Recommen-
dation(DGSR). It is a pure collaboration-based
model that connects different user sequences
through a dynamic graph structure, exploring the
interactive behavior of users and items with time
and order information[1]. We have conducted a
full study on this base model, including detecting
its performance bottleneck, evaluating its hyper-
parameters, and inspecting the potential issues of
the implementation of the code base. There are
serval issues we have spotted and fixed, which are
described in the fellow section called implemen-
tation detail. Our contributions to this model are
that we have improved its compatibility with dif-
ferent types of datasets and solved serval perfor-
mance bottlenecks, allowing it to perform better
in general cases.

Given these improvements on the base model
DGSR, a newly designed content-based model is
added as additional layers to elaborate the em-
bedding of items by making it aware of the lex-
ical and categorical meaning of the entities(e.g.
tags and other metadata) that are related to them.
Specifically, DGSR++ incorporates tag-based em-
beddings that capture the semantic relationships
between items through their associated tags. This
allows the model to understand the latent connec-
tions between items that may not be apparent from
collaborative data alone, improving recommenda-
tions in scenarios where user-item interaction data
is sparse or unavailable. It has been shown that
this approach can be used to mitigate the cold start
issue by our result.

3.2.2 Implementation details of the base
model

This section describes the drawbacks and chal-
lenges we encountered when researching the base
model of DGSR.

First, based on the given subgraph sam-
pling algorithm, which is given that G =
{(u,i,t, 0!, 0%)|u € U,i € V}, we need to sam-
ple a subgraph denoted as G(t), where m is
the hyper-parameter used to control the size of the
sub-graph, wu is the anchor node used as the center
of the sampling, ?, is the kth timestamp in the time
series and the most recent n first-order neighbors
will be selected. Given the neighborhood of u is
denoted as V,, , each item selected is i € N,,.

However, the implementation’s approach to
storing sampled subgraphs is suboptimal in terms
of efficiency. The method creates multiple directo-
ries, each containing several files. While caching
files in storage can eliminate the need for generat-
ing subgraphs and potentially accelerate execution
in some instances, this approach fails to consider
I/O efficiency adequately. For systems utilizing
HDDs or older storage devices, file fragmentation
can lead to inefficient disk head movement, result-
ing in poor performance.

Furthermore, considering that deep learning
models are often trained on remote platforms like
Google Colab, we discovered that DGSR’s data
loading approach was unable to read data in par-
allel, despite the use of multiple workers. This is
attributed to cloud storage load balancing mecha-
nisms that limit frequent I/O operations, causing
our model to spend an inordinate amount of time
on data loading alone.

To address these issues, we implemented an al-
ternative method to store subgraphs in memory.
Although this approach results in higher memory
usage, it offers improved efficiency. Users have
the option to choose between the original file-
based storage method and our memory-based al-
ternative, depending on their specific requirements
and system capabilities.

3.2.3 Proposed MPKG-lite

This section describes our proposed submodel for
generating item embeddings, which incorporates
content-based features to address the cold-start is-
sue inherent in collaborative models like DGSR.
Our model draws inspiration from KGAT,
which we introduced earlier. By adopting the con-
cept of capturing high-order relationships between

different entities (e.g., tags and items), we’ve
developed a modified implementation. We call
this embedding generation model Message Pass-
ing Knowledge Graph-lite (MPKG-lite).

We’ve implemented an option to control the
model’s complexity by adjusting the types of
knowledge graph entities and relations. This de-
sign choice stems from two factors. First, our
dataset contains relatively few relationships, mak-
ing a full forward MPNN pass on a knowledge
graph computationally expensive. Second, deep
message-passing in densely connected graphs can
lead to overfitting and gradient explosion. More-
over, KGAT essentially comprises two models:
one for generating embeddings from a knowledge
graph, and another for training on these embed-
dings to make predictions. We aim to replace the
second model with DGSR, as it shows the poten-
tial to outperform traditional approaches.

Specifically, The integration of DGSR allows
us to use the rich item embeddings generated by
MPKG-lite and fine-tune them through sequen-
tial interactions. This combined approach lever-
ages both content-based and collaborative filtering
techniques, enabling better performance in situa-
tions where user interactions are sparse or evolv-
ing.

In addition, during our work on integrating the
output item embedding of the MPKGe-lite and the
initial item embedding generated by DGSR, we
found out that the issue of over-squashing has min-
imal impact on bipartite graphs like that employed
in DGSR but is a key issue of MPKG-lite. Specifi-
cally, this is because in a bipartite graph, nodes can
only connect to nodes in the opposite set, which
may reduce the number of long-range dependen-
cies compared to more general graph types. There
is no need to establish an edge new connection
from node to node for the sake of rewiring because
it would only lead to extra noise in the training
graph. However, for a knowledge graph that con-
tains different types of edges and nodes, employ-
ing rewiring algorithms could optimize the perfor-
mance of the algorithm because it can provide an
optimized way to capture high-order relationships.

3.2.4 Implementation details

We begin by initializing item embeddings using
a pre-trained Word2Vec model. The initial em-
bedding matrix, Eyordovec € RIvocablxd encodes
content-based features. Here, |[vocab| represents
the vocabulary size, and d is the embedding di-

mension. To address the high dimensionality of
these embeddings, we employ Sparse Random
Projection (SRP). This technique reduces the em-
beddings’ dimensionality while retaining the most
significant features.

The projection can be formulated as:

Ereduced = Tsvp - Eword2vec € R\vocab\xd’

where d’ is the reduced embedding dimension,
and Tgyp is the random projection matrix gen-
erated using SRP. This process ensures that we
retain the most important aspects of the content-
based features while significantly reducing com-
putational complexity.

MPKG-lite constructs a lightweight knowledge
graph using the reduced embeddings. Nodes rep-
resent items and tags, while edges represent the
relationships between them. The knowledge graph
is defined as G = (V, E), where V are the nodes
(items and tags), and F are the edges (relations
between items and tags).

We employ a Message Passing Neural Network
(MPNN) for the knowledge graph. The embed-
dings for each node are updated by aggregating
information from its neighbors. The update rule
for each item node 7 at layer k is:

W =5 [Wk

Here, hgk) is the embedding of item ¢ at layer £,
W) is the weight matrix, and A/(i) denotes the
set of neighbors (tags) for item 7. This allows each
item embedding to be enriched with higher-order
relationships captured in the knowledge graph.

Next, given our dataset’s sparsity, we con-
trol the knowledge graph’s complexity by selec-
tively pruning weak or irrelevant relationships.
This approach reduces overfitting and maintains a
lightweight graph, particularly important in cases
where deep message passing might lead to gra-
dient explosion. We achieve this by dynamically
adjusting the graph during training, allowing only
significant relationships to contribute to the em-
bedding generation process.

After completing the message-passing process,
we feed the final embeddings into DGSR (Dy-
namic Graph Sequential Recommendation) to
model user-item interactions over time. Unlike

KGAT’s second model, DGSR adapts to user pref-
erences in real-time as interactions evolve. The fi-
nal embeddings from MPKG-lite serve as DGSR’s
initialization, providing rich content-based fea-
tures that enhance its collaborative filtering capa-
bilities, particularly in cold-start scenarios.

The final transformation for each item embed-
ding after message passing is:

h?nal — LeakyReLU(Wﬁnal ’ hz(L))

where hl(-L) is the embedding after . message-
passing layers. These final embeddings are
then combined with DGSR’s sequential features
through:

heombined — taph(W - concat(hi" hPOSRY)

This combination ensures that both content-
based and collaborative features are integrated,
providing a holistic representation of the item.

To enhance generalization and mitigate overfit-
ting, we implement dropout during the message-
passing phase. This technique randomly deacti-
vates a portion of the nodes’ embeddings, prevent-
ing the model from over-relying on specific graph
relationships. We also employ batch normaliza-
tion to stabilize training and combat gradient ex-
plosion, particularly in the MPNN’s deeper layers.

3.2.5 Hyperparameter optimization

We have also optimized our DGSR++ model by
conducting hyperparameter optimization. Hyper-
parameter optimization is crucial to improving the
performance of machine learning models, as it al-
lows us to fine-tune various parameters that con-
trol the model’s learning process.

In this study, we focused on optimizing sev-
eral key hyperparameters that significantly impact
model performance. The specific hyperparameters
and their corresponding ranges are as follows:

* Learning Rate: This controls the step size
during model weight updates. We optimized
it over a logarithmic scale between 5 x 1074
and 5 x 1073, aiming to strike a balance be-
tween fast convergence and avoiding oscilla-
tions during training.

* L2 Regularization: To prevent overfitting,
we adjusted the L2 regularization term within

the range of 2 x 10™* to 5 x 1073 The goal
was to find an appropriate value that con-
strains the model’s complexity without com-
promising performance.

* Number of GNN Layers: For the label gen-
eration model, the number of GNN layers
was optimized between 2 and 5. More lay-
ers enable the model to capture more com-
plex relationships between labels, but exces-
sive depth could lead to gradient vanishing or
overfitting.

* Negative Slope for Leaky ReLLU: The slope
of the negative side of the Leaky ReLU ac-
tivation function was tuned within the range
of 0.001 to 0.1. This ensures that even with
small gradients, the model can effectively
backpropagate and learn from negative in-
puts.

* Feature Dropout: To reduce over-reliance
on specific input features, we optimized the
feature dropout rate between 0.1 and 0.5.
This helps mitigate overfitting by randomly
dropping features during training.

* Attention Dropout: The dropout rate in the
attention mechanism was adjusted between
0.1 and 0.5. This is crucial to prevent the at-
tention mechanism from focusing too heavily
on specific node features, thereby improving
the model’s generalization ability.

* Number of GNN Layers (Model Layer
Number): We optimized the number of GNN
layers within a range of 3 to 5. This ensures
the model has sufficient depth to capture the
structure of the graph while avoiding over-
squashing information due to excessive lay-
ers.

For hyperparameter optimization, we employed
Bayesian Optimization using the Tree-structured
Parzen Estimator (TPE) to explore the hyperpa-
rameter space. This method was selected due to
its ability to efficiently balance exploration and ex-
ploitation, reducing the computational cost com-
pared to traditional grid search, while preserving
higher accuracy than randomized search. Addi-
tionally, TPE can further balance exploration and
exploitation, which is more efficient than a regu-
lar Bayesian Optimization implementation. The
intuition behind Bayesian optimization is that it

builds a surrogate model to estimate the distribu-
tion of the loss function, updating the surrogate as
new results are obtained to progressively focus on
the most promising regions of the hyperparameter
space.

The final hyperparameters were selected based
on the model’s performance on the validation set,
minimizing the value of the loss function. By iter-
ative attempts, we ensured that the model achieved
near-optimal performance.

This optimization process was conducted over
10 trials, with each trial dynamically adjusting the
hyperparameter ranges based on the results from
previous trials, gradually converging toward the
global optimum. As a result, the model’s perfor-
mance was significantly improved through these
optimized hyperparameters.

Figure 1: Hyperparameter optimization results

From the heatmaps, we can see that the combi-
nation with the lowest loss is as follows:

¢ Learning Rate (Ir): 0.001804
¢ L2 Regularization (12): 0.000219

* Number of MPKG-lite Layers
(tag_ num_gnn _layers): 5

» Tag Negative Slope: 0.074139

* Feature Drop Rate (feat_drop): 0.228232

* Attention Drop Rate (attn_drop): 0.240454
¢ Number of Layers (layer_num): 3

* Loss: 7.1452

Therefore, we selected this combination for our
later experiments and evaluations.

3.3 GTN

The Graph Transformer Network (GTN) is a
deep learning model proficient in generating graph
structures. Contrary to the frequently used model,
Graph Neural Networks (GNNs), which neces-
sitate a fixed and homogeneous graph structure,

GTNs excel at processing heterogeneous graphs.
They facilitate the generation of meta-path graphs
and the learning of node representations within
these graphs. By harnessing the power of GTNs,
we can enhance the performance of recommenda-
tion systems by uncovering intricate connections
between users and items. In this project, we devel-
oped a recommendation system based on a GTN
model sourced from GitHub. Our dataset con-
sisted of a matrix where each row represents a
unique user and each column corresponds to a
video game. The elements in the matrix repre-
sent user scores for video games, with a score of
0 indicating that a user has not played the game.
To train the model, we utilized the datasets pro-
vided by the original developer, which included
node features, edges connecting nodes, and target
labels. After collecting and applying the necessary
hyperparameters to the system, we invoked the
function designed to generate meta-paths within
the model. This step allowed us to discern the re-
lationships between users, specifically in the on-
line datasets we procured. The recommendation
system predicted the interactions, scoring in this
case, of the users to each game and subsequently
outputted personalized game suggestions for each
user, based on their interconnections within the
graph.

3.4 Traditional Method + Ensembled
learning

We apologize for not being able to present the
analysis of this part bacause our members were
unable to finish this part of description on time.

4 Experiments

In this section, we perform experiments on three
models that we either proposed or worked on. The
experiments are run on a specialized dataset to
evaluate the performance of our models. We aim
to answer the following questions through experi-
ments:

¢ RQ1: Which model out of all the three has
the best performance?

¢ RQ2: How far is each of the models affected
by the cold-start issue?
4.1 Experiments setup

4.1.1 Evaluation matrics

We utilize two commonly used metrics, Re-
call@K and Normalized Discounted Cumulative

Gain (NDCGQG), to assess all models. Recall@K
measures the proportion of true items within the
top K recommendations, while NDCG@K is a
rank-sensitive metric, where a higher NDCG in-
dicates that target items are ranked closer to the
top.

4.1.2 Baselines

To demonstrate the effectiveness, we plan to com-
pare our models with the following models:

* GRU4Rec+, an improved RNN-based model
that adopts a different loss function and sam-
pling strategy for Top-K recommendation.

* KGAT, Knowledge Graph Attention Net-
work, which incorporates high-order rela-
tions to refine item embeddings and improve
recommendations.

¢« FPMC, a model that combines matrix factor-
ization and first-order Markov Chains to cap-
ture users’ long-term preferences and item-
to-item transitions.

However, due to a limited amount of time and
the fact that only Alvin is working on this part of
codebase, we were unable to adjust the data re-
quired for these standard models. Nonetheless, we
can still compare our models.

4.1.3 Datasets

In the context of my research, I adopted a method-
ical strategy for managing data. Firstly, missing
data point is the main issues for me. The treat-
ment of missing values is executed through a com-
bination of imputation methods. For instance, our
dataset of movie only include the name of them.
Instead, we need more information. Though the
web crawler in python. We eventually got the la-
bel of those movie. Furthermore, since different
forms of dataset are fixed in different program,
the dataset needs to be transform. With the help
of python pandas, different dataset are available
for the program. By analyzing the descriptive
statistics of the data and visualizing its patterns, I
gained valuable insights into the fundamental phe-
nomena that guide the next steps in data clean-
ing and preprocessing. This rigorous data extrac-
tion procedure is not only essential to maintain-
ing the sanctity of empirical investigation, but also
provides fertile ground for subsequent analytical
work.

4.2 Performance Comparison

Based on our experiment, the following results
were obtained:

Metrics DGSR++ | Ensembled
Recall@5 0.7989 0.6036
Recall@10 0.8682 0.6413
NDCG@5 0.6306 0.6992
NDCG@10 | 0.7243 0.8057

Table 1: Performance Comparison of DGSR++
and Ensemble Model

The performance of the models was evaluated
using Recall@K and NDCG @K, two widely used
metrics in recommendation systems. Recall@K
measures the proportion of relevant items found
in the top K recommendations, while NDCG@K
considers the rank of the relevant items in the rec-
ommendation list. The results of our experiments
are summarized in Table X.

Firstly, the DGSR++ model achieved a Re-
call@5 of 0.7989 and a Recall@10 of 0.8682,
demonstrating a strong ability to accurately rec-
ommend relevant items within the top 5 and top
10 suggestions. In terms of ranking quality,
DGSR++ scored 0.6306 on NDCG @5 and 0.7243
on NDCG @10, indicating that the model not only
recalled relevant items but also ranked them rela-
tively high in the recommendation list.

The Ensemble model showed lower perfor-
mance on recall metrics, with Recall@5 of 0.6036
and Recall@10 of 0.6413. These results sug-
gest that the ensemble method is less effective
at finding relevant items compared to DGSR++.
However, the ensemble model performed better
in ranking relevant items, achieving NDCG @5 of
0.6992 and NDCG @10 of 0.8057. This indicates
that although the ensemble model retrieved fewer
relevant items, it positioned those items higher in
the recommendation list.

4.2.1 Study of the performance of different
models (RQ1)

Based on Recall metrics, DGSR++ outperforms
the ensemble model, especially in Recall@10,
where DGSR++ achieves 0.8682 compared to
0.6413 for the ensemble model. This highlights
DGSR++’s superior ability to retrieve relevant
items in general. However, on the NDCG met-
rics, the ensemble model shows a slight advantage,
with higher NDCG@5 and NDCG@10 scores,

suggesting that it ranks relevant items more effec-
tively.

Thus, the best-performing model depends on
the task. If the priority is maximizing the number
of relevant items retrieved, DGSR++ is the better
choice. However, if ranking the retrieved items
is more critical, the ensemble model shows some
benefits.

4.2.2 Study of how each model handles the
cold-start problem (RQ2)

The cold-start problem arises when there is insuf-
ficient data about new users or items, making ac-
curate recommendations challenging. DGSR++,
by combining dynamic user-item interactions with
content-based features, appears to handle this is-
sue more effectively. Its superior Recall scores
suggest that it can make better recommendations
even with limited interaction data, likely due to its
use of tag-based embeddings and content features.

On the other hand, the ensemble model, which
relies more on collaborative filtering, struggles
with cold-start situations, as evidenced by its
lower recall performance. This is expected, as
collaborative filtering often requires a substantial
amount of interaction data to perform well.

In conclusion, DGSR++ shows stronger overall
performance in retrieving relevant items and ad-
dressing the cold-start problem, while the ensem-
ble model provides better ranking of the retrieved
items. The choice between these models depends
on the specific objectives of the recommendation
task.

5 Conclusion

This paper presents a study focused on improving
recommendation systems by tackling key issues
like the cold-start problem and sparse data. Our
main contribution is DGSR++, a hybrid model
that combines user-item interactions with content-
based features through tag-based embeddings.
This model has shown strong performance, par-
ticularly in addressing the cold-start problem, by
using both collaborative and content-based meth-
ods.

We developed MPKG-lite, a lightweight model
that generates item embeddings using knowledge
graphs. By capturing relationships between items
and their features, it provides an efficient solution
for handling sparse data.

Additionally, we explored an updated version
of the Graph Transformer Network (GTN), which

improved the ability to model complex relation-
ships between users and items, showing potential
for future work in leveraging graph structures for
recommendations.

Besides, we also looked at ensemble learning,
combining multiple models to improve overall
performance. While DGSR++ excelled in find-
ing relevant items, the ensemble model performed
better in ranking them accurately. We found out
that each model has its strengths: DGSR++ and
MPKG-lite are particularly good at handling cold-
start issues, while ensemble learning improves
ranking. However, due to the unfinished parts of
our researchers, such as the improved GTN part,
we can hardly draw up its conclusion.

6 Limitations

Admittedly, there are lots of limitations in our
work. The biggest one is that all researchers are
high school students, which means that we are
not experienced enough to achieve innovative out-
comes while debugging efficiently.

Specifically, for the DGSR++ part, we
don’t have enough resources and time to
carry out enough iterations of hyperparame-
ter optimization. Even if we have tried very
hard to optimize the model that we are us-
ing, the efficiency is not very satisfactory.
Specifically, there is a common guideline
to conduct at least 10 to 20 evaluations per

hyperparameter[[source](https://neptune.ai/blog/how-

to-optimize-hyperparameter-search)]. There are
7 essential hyperparameters in our model, which
means a thorough Bayesian hyperparameter
optimization requires at least 70 iterations to
achieve tangible improvement. But it would be
too long for our available resources - only 10
iterations took us 11 hours. Therefore, there must
be a more optimal permutation of hyperparameter
that could overcome the bottleneck of gradient
descent that we are facing currently. Additionally,
most of our trained parameters only endured
around 10 epochs, which is inadequate but takes a
considerable amount of time.

Moreover, for the MPKG-lite part, the reason
why its name involves “lite” is because the com-
plete and generic way to generate item embedding
is to have multiple relationships and entities. The
current approach is only a compromise. Even if
we leave out an endpoint to implement this fea-
ture, we don’t have the data and resources to finish

this feature within our available time.

7 Future works

7.1 For GTN part

In the future, we plan to apply a Generative Adver-
sarial Network (GAN) to our system to improve
the accuracy of recommendations. Specifically,
we will use our existing GTN-based system as the
generator and focus on training the discriminator.
The discriminator will be trained using the non-
zero entries of the user-game matrix as real data
points, representing actual user-game interactions,
while the predicted scores generated by the GTN
for games that users have not played will be treated
as fake samples. The recommendations generated
by the GTN will then be evaluated by the discrimi-
nator, which will classify each recommendation as
either “real” or “fake” based on whether it is likely
to be relevant to the user.

References

Amine Dadoun. 2023. Introduction to knowledge
graph-based recommender systems. Medium, 23
May 2023. Available at:
https://towardsdatascience.com/
introduction-to-knowledge—-graph
—-based-recommender-systems—34
254e£d1960.

Jacob Murel. 2024. What is collaborative filtering? —
IBM. IBM, 18 Mar. 2024. Available at:
https://www.ibm.com/topics/
collaborativefiltering#:~:text=
Collaborative%$20filtering%20uses$%
20a%20matrix
Accessed 13 Aug. 2024.

Google. 2022. Recommendation systems - Google
Search. Google.com. Available at:
https://www.google.com/search?
g=Recommendation+systems&oqg=
Recommendation+systems&gs_lcrp=

EgZjaHIvbWUyBggAEEUYOdIBCDY5Mmowa jE1IQAIISAIBS

sourceid=chrome&ie=UTF-8.
Accessed 13 Aug. 2024.

Jie Zhou, et al. 2020. Graph neural networks: A re-
view of methods and applications. Al Open, 1:57—
81.

Rianne van den Berg, Thomas N. Kipf, and Max
Welling. 2017. Graph convolutional matrix com-
pletion. arXiv preprint arXiv:1706.02263.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost:
A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining, pages 785—
794.

Xiang Wang, et al. 2019. Kgat: Knowledge graph
attention network for recommendation. In Proceed-
ings of the 25th ACM SIGKDD international confer-
ence on knowledge discovery & data mining, pages
950-958.

Mengqi Zhang, et al. 2022. Dynamic graph neu-
ral networks for sequential recommendation. /EEE
Transactions on Knowledge and Data Engineering,
35(5):4741-4753.

Xiang Wang, et al. 2019. Neural graph collaborative
filtering. In Proceedings of the 42nd international
ACM SIGIR conference on Research and develop-
ment in Information Retrieval, pages 165-174.

Rex Ying, et al. 2018. Graph convolutional neural net-
works for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 974-983.

Ratul Dey and Rajeev Mathur. 2023. Ensemble
learning method using stacking with base learner,
a comparison. In Lecture notes in networks and
systems, pages 159-169. doi:10.1007/978-981-99-
3878-0_14.

M. A. Ganaie, et al 2022. Ensemble deep
learning: A review. Engineering Applica-
tions of Artificial Intelligence, 115:105151.
doi:10.1016/j.engappai.2022.105151.

Giang Ngo, et al. 2022. Evolutionary bagging for
ensemble learning. Neurocomputing, 510:1-14.
doi:10.1016/j.neucom.2022.08.055.

